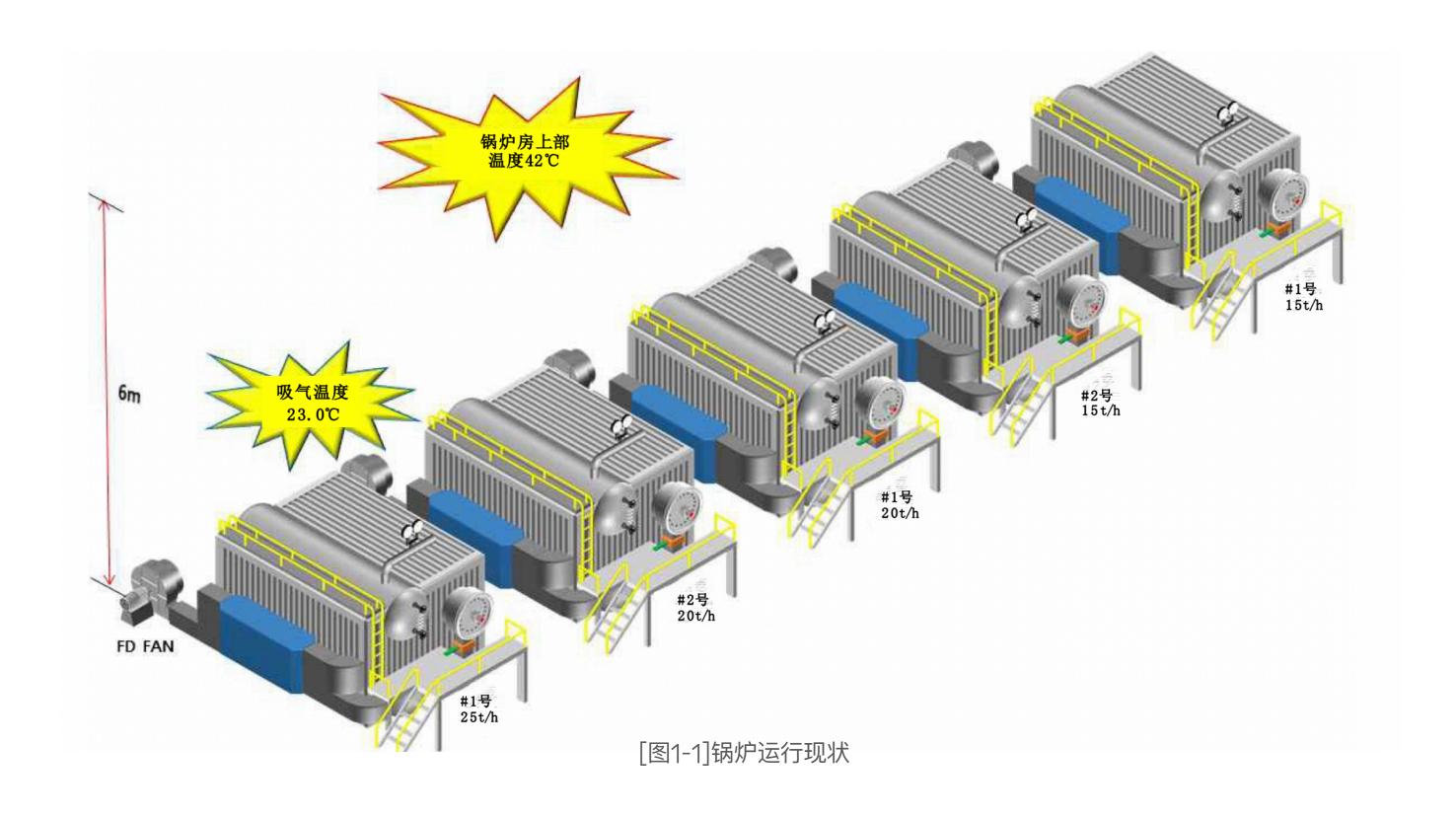


1-7. 通过提高锅炉燃烧空气温度节约燃料

	————		其他
行业	汽车零部件	电气, 电子, 半导体	
符合			0

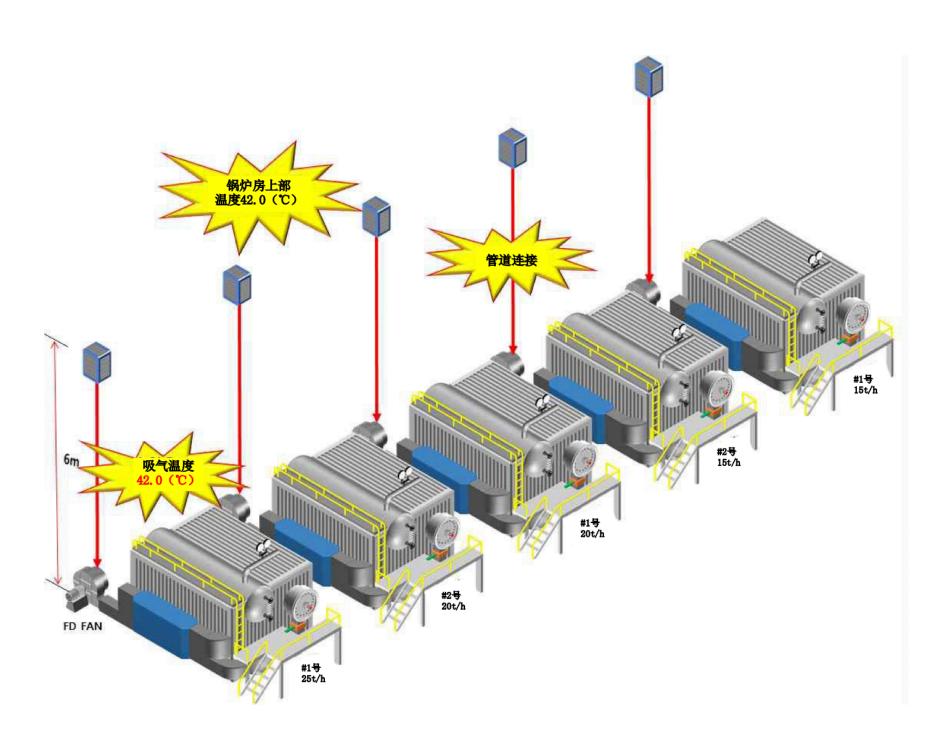

1-7. 通过提高锅炉燃烧空气温度节约燃料

一、现状及问题

就各锅炉的燃烧空气吸入方式而言,由于FD Fan安装于地面上,室内地面的冷空气直接进入锅炉,而且因从室内设备等排放热气,上层气流温度非常高,因此,其温差很大。

[表1-1]锅炉房上下部温度测量值

分类	单位		锅炉房上下部温度测量	
测量日期	年月日	2022.03.22上午	2022.03.22下午	平均温度
测量位置	_	25t/h 1号机附近	20t/h 1号机附近	(°C)
上部温度	(°C)	43	41	42
下部温度	(°C)	24	22	23
温差	(°C)	19	19	19



如上所述,以诊断时间点为准,上部和下部温度分别为42.0 ($^{\circ}$ C)和23.0 ($^{\circ}$ C),平均温差约为19.0 ($^{\circ}$ C)。考虑到这一点,若使用上部气流作为初期燃烧空气,可能会有节能效果,其他公司也有很多与此相关的节能案例,因此建议使用该方法。

1-7. 通过提高锅炉燃烧空气温度节约燃料

二、改善方案

通过利用管道将FD Fan吸气口连接到上部(约6.0m),使用形成于上部的高温气流作为燃烧空气,就会造成吸气温度上升,由此可以节约燃料。

[图1-2]锅炉管道连接运行现状

三、预期效果

设备燃料 节约量 [ton/年]	设备燃料 节约率 [%]	节约量 [toe/年]	节约额 [百万韩元/年]	投资费用 [百万韩元]	投资回收期 [年]	温室气体 减排量 [tCO2eq/年]
70.27	0.79	84.61	42.87	58.50	1.36	210.61

1-7. 通过提高锅炉燃烧空气温度节约燃料

(1) 利用参数

(a) 年度锅炉燃料使用量: 8,895,235(kg/年) - 2022年

(b) 改善前锅炉燃烧空气温度(t₁):23.O(°C)

(c) 改善后锅炉燃烧空气温度(t₂): 42.O(°C)

(d) LPG理论空气量(Ao): 12.332(Nm³/kg)

(e) 空气比热(Cp): 0.31(kcal/Nm³.℃)

(f) 过剩空气系数: 1.2

(g) LPG低位发热量(Q): 11,060(kcal/kg)

(h) 燃料单价: 610.0(韩元/kg) - 2022年

(2) 燃料节约率(ε)

$$= \frac{A_0 \times 1.2 \times C_P \times (t_2 - t_1)}{Q} \times 100 \,(\%) = \frac{12.332 \times 1.2 \times 0.31 \times (42 - 23)}{11,060} \times 100 \,(\%)$$

$$= 0.79(\%)$$

(3)燃料节约量

- =年度LPG使用量(kg/年) \times 燃料节约率(%)
- $= 8,895,235(kg/\mathbf{4}) \times 0.79(\%)$
- =70,272.36[kg/年] → 84.61[toe/年]

(4) 年度节约额

- =年度LPG节约量(kg/年)×LPG单价(韩元/kg)
- $=70,272.36(kg/年) \times 610(韩元/kg)$
- = 42.87[百万韩元/年]

(5) 投资费用: 58.50[百万韩元]

分类	规格	数量	投资费用 (千韩元)
管道工程	1套	5 set	30,000
配件类	1套		15,000
其他费用	工程费用的30%		13,500
	合计		58,500

(6) 投资回收期

- = 投资费用(百万韩元)÷年度节约额(百万韩元/年)
- = 58.5 (**百万韩**元) ÷ 42.87 (**百万韩元/年**)
- =1.36[年]

(7) 温室气体减排量

- =碳减排量(tc/年)×(二氧化碳分子量/碳分子量)
- $=57.44(tC/\mathbf{f})\times(44/12)(CO2eq/C)$
- = 210.61[tCO2eq/年]