

1-4. 通过改善锅炉过剩空气系数节约燃料

 行 <u>业</u>	汽车零部件		其他
符合		0	

一、现状及问题

当前本楼安装运行3台3(ton)锅炉,排气分析结果显示,当过剩空气系数为1.469时,排气温度较高,测得为113(°C);当过剩空气系数为较低的1.304时,排气温度则为118(°C),该损失热量相当于LNG发热量(热值)中的5%。

(1) 锅炉性能测量分析

[表1-1]锅炉性能分析结果(2022.05.11 11:00~12:00)测量(1h)

项目	单位	测量值	备注
火口		锅炉#2	田 <i>/</i> 工
容量	kg/h	3,000	
使用燃料	-	LNG	发热量(热值)9,290 kcal/Nm³
燃料使用量	Nm³/h	141.0	
蒸汽发生量	kg/h	1,940.8	
给水量	ℓ/h	1,956	
排污量	kg/h	_	
蒸汽压力	kg/cm².g	3.5	
燃烧空气温度	$^{\circ}\mathbb{C}$	24.7	
排气温度	$^{\circ}\mathbb{C}$	113	
排气 O ₂ 成分	v %	6.7	4.9 ~ 6.7
排气CO成分	v %	_	_
过剩空气系数	-	1.469	标准1.2以下
产汽比	kg/Nm³	13.76	_
效率	%	89.5	通常为93%以上
负荷率	%	64.7	

◆ 过剩空气系数计算

$$m = 21/(21 - O_2)$$

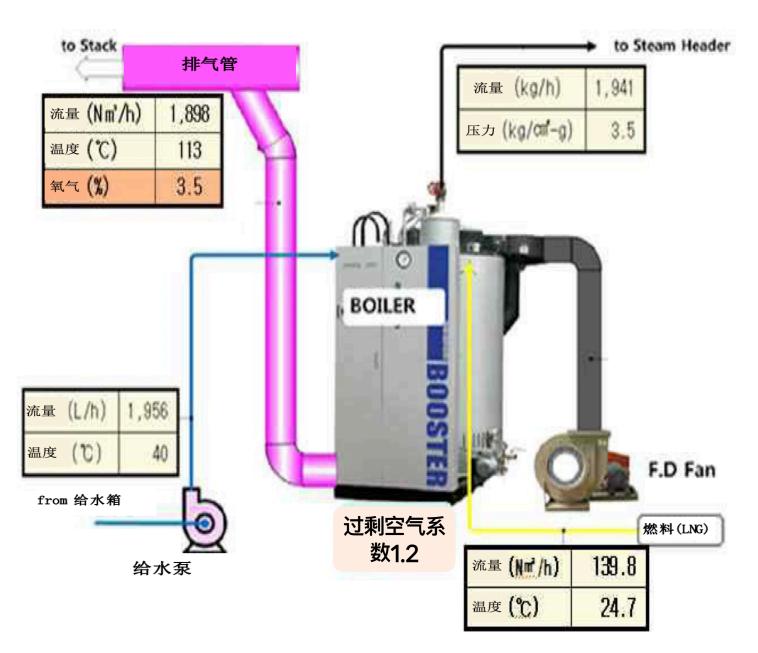
= 21/(21 - 6.7)

= 1.469

◆ 排气损失热量(kcal/Nm³)

- = {理论排气量 \times 排气比热 + (当前过剩空气系数 -1) \times 理论空气量} \times 空气定压比热} \times (排气温度 外气温度)
 - = $\{11.380(Nm^3/Nm^3) \times 0.33(kcal/Nm^3 °C) + (1.469 1) \times 10.405(Nm^3/Nm^3) \times 0.31(kcal/Nm^3 °C)\} \times (113 23.1) °C$
- = 473.6(kcal/Nm³)

二、改善方案


通过调节锅炉的过剩空气系数减少因空气过剩造成的排气热损失,能够节约燃料。通过安装氧气调节系统(O_2 Trimming,氧微调),将过剩空气系数与氧气浓度连动才有效,

但要安装该系统,就需要过大投资费用,因此,最好通过设备供应商(升压器)来定期测量氧气浓度,手动调节过剩空气系数。

(1) 改善目标

通过调节燃烧过剩空气系数如下表来使用。

设备名称	当前过剩空气系数	改善后过剩空气系数	改善后过剩空气系数设置依据
锅炉(3吨)	1.47	1.20	能源管理标准:产业通商资源部告示第2018-135号 [附表1] 1. 锅炉标准及目标过剩空气系数

[图1-1] 过剩空气系数改善后锅炉排气系统图

三、预期效果

设备燃料 节约量 [千Nm³/年]	设备燃料 节约率 [%]	节约量 [toe/年]	节约额 [百万韩元/年]	投资费用 [百万韩元]	投资回收期 [年]	温室气体 减排量 [tCO2eq/年]
4.87	0.82	5.01	2.86	1.0	0.35	10.60

(1) 利用参数

(a) 当前过剩空气系数: 1.47

(b) 改善后过剩空气系数:1.2

(c) 2021年锅炉LNG使用量: 5.93 (千Nm³/年)

(d) 燃料单价:586.9 (韩元/Nm³)

(e) 理论燃烧空气量: 10.405(Nm³/Nm³)

(f) 燃烧空气比热: 0.31(kcal/Nm³℃)

(g)排气温度:113(℃)

(h) 燃烧空气温度: 24.7(°C) - 以诊断时室内温度为准

(2)燃料节约量

- (a) 燃料可节约量(Q)
 - =(当前过剩空气系数 改善后过剩空气系数) \times 理论空气量 \times 空气定压比热 \times (排气温度 燃烧空气温度)
 - $= (1.469 1.20) \times 10.405 (Nm³/Nm³) \times 0.31 (kcal/Nm³ °C)$
 - $\times (113 24.7)^{\circ}$ C
 - = 76.6[kcal/Nm³]

(b) 年度锅炉燃料节约率

- $= (Q/Qi) \times 100 (\%)$
- $= \{76.6(kcal/Nm^3) / 9,299(kcal/Nm^3)\} \times 100$
- = 0.82[%]

(c) 年度燃料节约量

- = 年度燃料使用量×节约率
- $=5.93(\text{+Nm}^3/\text{+}) \times 0.82(\%)$
- $=4.87(\text{fNm}^3/\text{f}) \times 1.029(\text{toe}/\text{fNm}^3)$
- = 5.01[toe/年]

(3) 年度节约额

- = 年度燃料节约量(千Nm³/年) × LNG 单价(韩元/Nm³)
- =4.87(千Nm³/年)×586.9(韩元/Nm³)
- = 2.86[百万韩元]

(4) 投资费用: 1.0[百万韩元]

项目	金额 (百万韩元)	备注
过剩空气系数调节	1.0	
合计	1.0	

(5) 投资回收期

- = 投资费用(百万韩元)÷年度节约额(百万韩元/年)
- = 1.0 (百万韩元) ÷ 2.86 (百万韩元/年)
- = 0.35[年]

(6) 温室气体减排量

- =碳减排量(tC/年)×(二氧化碳分子量/碳分子量)
- $= 2.89(tC/\mathbf{4}) \times (44/12)(CO2eq/C)$
- =10.60[tCO2eq/年]